## Synthesis of Enantiomerically Pure Bicyclo[3.1.0]hexanes from D-Ribose by Intramolecular Cyclopropanation

## John K. Gallos,\* Theocharis V. Koftis and Alexandros E. Koumbis

Department of Chemistry, Aristotelian University of Thessaloniki, Thessaloniki 540 06, Greece

Highly functionalized optically pure bicyclo[3.1.0]hexan-2-ones **6a** and **6b** are easily obtained by the intramolecular cyclopropanation of a p-ribose derivative using the iodonium ylide or diazo compound methods, which afford the final products with opposite diastereoselectivities.

Bicyclo[3.1.0]hexane derivatives of the general structure A are of considerable importance in organic synthesis due to the versatility of the cyclopropane ring<sup>1</sup> and the ubiquitous occurrence of the cyclopentane ring in natural products and synthetic materials.<sup>2</sup> These and related systems have been extensively used as intermediates in the synthesis of steroids,<sup>3</sup> prostanoids,<sup>4</sup> vitamin D analogues,<sup>5</sup> terpenoids<sup>6</sup> and amino acids.<sup>7</sup> Furthermore, the bicyclo[3.1.0]hexane ring system, properly substituted, has been used as the carbocyclic moiety for the synthesis of modified nucleosides structurally related to neplanocin C.<sup>8</sup>



The most general method used for the construction of the ring system A is the intramolecular cyclopropanation of unsaturated diazocarbonyl compounds, which act as carbenoid precursors.<sup>9</sup> However, the use of iodonium ylides  $^{5g,10}$  instead of the hazardous diazo compounds has also been proposed. Several methods have been utilized for the preparation of optically active bicyclo[3.1.0]hexanes. They include the resolution of racemates,  $^{5c.d}$  the enantioselective intramolecular carbene–olefin cyclopropanation using diazocarbonyl compounds in the presence of chiral catalysts,  $^{5e,11}$  the diastereoselective Simmons–Smith reaction  $^{12}$  and the intramolecular cyclopropanation via iodonium ylides using chiral auxiliary alcohols.<sup>5g</sup>

We now report a different approach to enantiomerically pure bicyclo[3.1.0]hexane derivatives by the intramolecular cyclopropanation of sugar templates using the diazocarbonyl and iodonium ylide methods.

The unsaturated aldehyde 2 was easily prepared by refluxing an ethanolic solution of the iodoribose derivative 1 with activated zinc, <sup>13</sup> removal of the solids by filtration and careful evaporation of the solvent at temperatures<sup>14</sup> not exceeding 35 °C. Treating a methylene dichloride solution of compound 2 with ethyl diazoacetate in the presence of tin chloride<sup>15</sup> at room temp. for 2 h gave the keto ester 3 in 46% yield from compound 1. Any remaining alcohol from the former step degrades the yield of compound 3, since it reacts preferentially with ethyl diazoacetate to form the *O*-ethyl glycolic acid ethyl ester. The unsaturated keto ester 3 was then converted by standard procedures either to the diazo compound 4 in quantitative yield <sup>6d</sup> or to the iodonium ylide 5,<sup>10a</sup> which was not characterized because of its instability, but was used immediately in the next reaction.<sup>†</sup>

The diazo compound **4** underwent intramolecular cyclopropanation by refluxing in toluene for 6 h in the presence of a catalytic amount of CuI (5 mol%) to give the desired bicyclo[3.1.0]hexan-2-one derivatives **6a** and **6b** in 66% total



Scheme 1 Reagents and conditions: i, Zn, EtOH (95%), reflux, 1 h; ii, N<sub>2</sub>CHCO<sub>2</sub>Et, SnCl<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, room temp., 2 h, 46% from 1; iii, TsN<sub>3</sub>, Et<sub>3</sub>N, room temp., 6 h, 97% to 4; iv, PhI(OAc)<sub>2</sub>, KOH (4 quiv.), EtOH,  $-5 \,^{\circ}$ C (to 5); v, CuI, toluene, reflux, 6 h (for 4); vi, CuI, CH<sub>2</sub>Cl<sub>2</sub>, N<sub>2</sub>, room temp., 1 h (for 5)

yield and with a diastereoisomeric ratio of 4.5:1. On the other hand, the iodonium ylide **5** was cyclized by stirring in methylene dichloride at room temp. for 1 h in the presence of a catalytic amount of CuI (5 mol%), to give compounds **6a** and **6b** in 45% total yield (from compound **3**) and with a diastereoisomeric ratio of 1:1.5. Diastereoisomers **6a** and **6b** were easily separated by column chromatography on silica gel (ethyl acetate-hexane 1:2,  $\Delta R_f = 0.1$ ).† The structural assignment of the diastereoisomers was based on their <sup>1</sup>H NMR spectra, where the proton coupling constant  $J_{4,5}$  was zero for compound **6b** and 5.5 Hz for compound **6a**. In related systems, the  $J_{4.5}$  is zero when the two protons are in *anti* positions.<sup>8a</sup>

An interesting feature of the reactions reported here is the reverse diastereoselectivity obtained by the diazo compound and the iodonium ylide. This finding supports Moriarty's suggestion  $5^{g,10}$  that these two reactions follow different mechanisms: the metal-catalysed decomposition of the diazo compounds probably proceeds *via* a carbenoid, while the iodonium ylide cyclopropanation is a stepwise electrophilic

<sup>†</sup> All new compounds isolated **3**, **4**, **6a** and **6b** gave satisfactory elemental analyses or exact molecular weight measurements.  $[\alpha]_D$  Values are given in uhits of  $10^{-1}$  deg cm<sup>2</sup> g<sup>-1</sup>. Compound **3**: oil,  $[\alpha]_D + 37$  (*c* 1 in CHCl<sub>3</sub>); compound **4**: oil,  $[\alpha]_D - 72$  (*c* 1 in CHCl<sub>3</sub>); compound **6a**: oil,  $[\alpha]_D - 44.2$  (*c* 0.67 in CHCl<sub>3</sub>); compound **6b**: oil,  $[\alpha]_D - 36.6$  (*c* 0.64 in CHCl<sub>3</sub>). <sup>1</sup>H NMR data (*J*/Hz): compound **6a**:  $\delta_H$ (CDCl<sub>3</sub>) 1.25 (3 H, t, *J* 7), 1.3 (3 H, s), 1.5 (3 H, s), 1.8 (1 H, t, *J* 5.5, 6-H), 2.05 (1 H, dd, *J* 8.5 and 5.5, 6-H), 2.75 (1 H, dt, *J* 8.5 and 5.5, 5-H), 4.2 (2 H, q, *J* 7), 4.35 (1 H, d, *J* 8, 3-H) and 5.05 (1 H, dd, *J* 8 and 5.5, 4-H); compound **6b**:  $\delta_H$ (CDCl<sub>3</sub>) 1.25 (3 H, t, *J* 7), 1.35 (3 H, s), 1.4 (3 H, s), 1.55 (1 H, t, *J* 5.5, 6-H), 2.1 (1 H, dd, *J* 8.5 and 5.5, 6-H), 2.85 (1 H, dd, *J* 8.5 and 5.5, 5-H), 4.2 (2 H, q, *J* 7), 4.3 (1 H, d, *J* 5, 3-H) and 4.7 (1 H, d, *J* 5, 4-H).

addition of the iodonium centre to the double bond. This then affords the cyclopropane ring by reductive elimination of iodobenzene through an intermediate analogous to intermediates I-1 and I-2. In the present case, the favoured transition state TS-1 from the carbenoid and the unfavoured intermediate I-1 from the iodonium ylide give the product 6a, while the unfavoured TS-2 and the favoured intermediate I-2 give the product 6b.

This synthetic route could also be used to prepare the enantiomers of **6a** and **6b**, since the enantiomer of aldehyde **2** is also known.<sup>14,16</sup>



## Experimental

Synthesis of the Keto Ester 3 from the lodoribose 1.—To a well stirred solution of compound 1 (1.256 g, 4 mmol) in EtOH (95%; 20 cm<sup>3</sup>) was added activated zinc<sup>13</sup> (2.6 g, 40 mmol). The mixture was refluxed for 1 h whilst the reaction progress was monitored by TLC. The solids were then filtered off and the solvent was carefully evaporated under reduced pressure with the bath temperature not exceeding 35 °C. The product was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>), SnCl<sub>2</sub> (760 mg) and ethyl diazoacetate (570 mg, 5 mmol) were added and the mixture stirred at room temp. for 2 h. The desired keto ester 3 (445 mg, 46%) was obtained by chromatography on silica gel (ethyl acetate–hexane, 1:4).

Bicyclo[3.1.0]hexan-2-ones **6a** and **6b**.—(i) From the diazo compound **4**. To a well stirred solution of the diazo compound **4** (268 mg, 1 mmol) in toluene (5 cm<sup>3</sup>), prepared according to the literature procedure <sup>6d</sup> from compound **3**, was added CuI (10 mg) and the resultant mixture was refluxed for 6 h. Column chromatography of the reaction mixture on silica gel (ethyl acetate-hexane 1:2) gave compound **6a** (130 mg, 54%) followed by compound **6b** (29 mg, 12%).

(ii) From the iodonium ylide 5. To a cold stirred solution of the keto ester 3 (242 mg, 1 mmol) in EtOH (5 cm<sup>3</sup>) was added at -5 °C a solution of KOH (224 mg, 4 mmol) in EtOH (5 cm<sup>3</sup>) followed by the addition at the same temp. of a solution of PhI(OAc)<sub>2</sub> (322 mg, 1 mmol) in EtOH (10 cm<sup>3</sup>). The mixture was kept at -5 °C for 30 min, then poured into H<sub>2</sub>O (20 cm<sup>3</sup>), extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 50 cm<sup>3</sup>) and the organic layer was dried over MgSO<sub>4</sub>. The solution was concentrated to 10 cm<sup>3</sup> and then CuI (10 mg) was added and the mixture was stirred at room temp. for 1 h, under a nitrogen atmosphere. Compounds **6a** and **6b** formed, and were isolated as above in yields of 18% (43 mg) and 27% (65 mg), respectively.

## References

- (a) H. N. C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C. Yip, J. Tanko and T. Hudlicky, *Chem. Rev.*, 1989, **89**, 165; (b) *The Chemistry of the Cyclopropyl Group*, Z. Rappoport, Wiley, New York, 1987, Parts 1 and 2; (c) T. Hudlicky and J. W. Reed, in *Comprehensive Organic Synthesis*, ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 5, p. 899.
- 2 (a) E. J. Corey and X.-M. Cheng, The Logic of Chemical Synthesis, Wiley, New York, 1989; (b) S. Hanessian, Total Synthesis of Natural Products: The "Chiron" Approach, Pergamon Press, Oxford, 1983; (c) A. D. Borthwick and K. Biggedike, Tetrahedron, 1992, 48, 571; (d) T. Hudlicky and J. D. Price, Chem. Rev., 1989, 89, 1467.
- 3 B. M. Trost, D. F. Taber and J. B. Alper, *Tetrahedron Lett.*, 1976, 17, 3857.
- 4 (a) K. Kondo, E. Hiro and D. Tunemoto, *Tetrahedron Lett.*, 1976, **17**, 4499; (b) D. F. Taber, J. Am. Chem. Soc., 1977, **99**, 3513.
- 5 (a) H. Nemoto, X.-M. Wu, H. Kurobe, M. Ihara, K. Fukumoto and T. Kametani, *Tetrahedron Lett.*, 1983, 24, 4257; (b) H. Nemoto, X.-M. Wu, H. Kurobe, M. Ihara, K. Fukumoto and T. Kametani, *Tetrahedron Lett.*, 1984, 25, 3095; (c) H. Nemoto, X.-M. Wu, H. Kurobe, K. Minemura, M. Ihara, K. Fukumoto and T. Kametani, *J. Chem. Soc.*, *Perkin Trans.* 1, 1985, 1185; (d) S. R. Wilson, M. S. Haque, A. M. Venkatesan and P. A. Zucker, *Tetrahedron Lett.*, 1984, 25, 3151; (e) S. R. Wilson, A. M. Venkatesan, C. E. Angelli-Szafran and A. Yasmin, *Tetrahedron Lett.*, 1991, 32, 2339; (f) M. Kabat, J. Kiegiel, N. Cohen, K. Toth, P. M. Wovkilivich and M. R. Uskokovic, *Tetrahedron Lett.*, 1991, 32, 2343; (g) R. M. Moriarty, J. Kim and L. Guo, *Tetrahedron Lett.*, 1993, 34, 4129.
- 6 (a) T. Hudlicky, B. C. Ranu, S. M. Naqvi and A. Srnak, J. Org. Chem., 1985, 50, 123; (b) E. Y. Chen, J. Org. Chem., 1984, 49, 3245; (c) S. H. Kang, W. J. Kim and Y. B. Chae, Tetrahedron Lett., 1988, 29, 3169; (d) A. J. Singh, R. K. Bakshi and E. J. Corey, J. Am. Chem. Soc., 1987, 109, 6187.
- 7 (a) A. M. P. Koskinen and L. Muñoz, J. Chem. Soc., Chem. Commun., 1991, 1373; (b) A. M. P. Koskinen and L. Muñoz, J. Org. Chem., 1993, 58, 879; (c) A. M. R. Koskinen and H. Hassila, J. Org. Chem., 1993, 58, 4479.
- 8 (a) J. B. Rodriguez, V. E. Marquez, M. C. Nicklaus and J. J. Barchi, Jr., *Tetrahedron Lett.*, 1993, 34, 6233; (b) L. H. Koole, S. Neidle, M. D. Crawford, A. A. Krayevski, G. V. Gurskaya, A. Sandstrom, J.-C. Wu, W. Tong and J. Chattopadhaya, *J. Org. Chem.*, 1991, 56, 6884.
- 9 A. Padwa and K. E. Krumpe, Tetrahedron, 1992, 48, 5385.
- 10 (a) R. M. Moriarty, O. Prakash, R. K. Vaid and L. Zhao, J. Am. Chem. Soc., 1989, 111, 6443; (b) A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH Publishers, Weinheim, 1992, p. 323.
- 11 W. G. Dauben, R. T. Hendricks, M. J. Luzzio and H. P. Ng, Tetrahedron Lett., 1990, 31, 6969.
- 12 (a) C. R. Johnson and M. R. Barbachyn, J. Am. Chem. Soc., 1982, 104, 4290; (b) E. A. Mash and K. A. Nelson, J. Am. Chem. Soc., 1985, 107, 8256; (c) E. A. Mash and K. A. Nelson, Tetrahedron Lett., 1986, 27, 1441; (d) E. A. Mash and D. S. Torok, J. Org. Chem., 1989, 54, 250; E. A. Mash, S. B. Hemperly, K. A. Nelson, P. C. Heidt and S. Van Deusen, J. Org. Chem., 1990, 55, 2045.
- 13 See preceding paper.
- 14 T. V. RajanBabu, W. A. Nuget, D. F. Taber and P. J. Fagan, J. Am. Chem. Soc., 1988, 110, 7128.
- 15 C. R. Holquist and E. J. Roskamp, J. Org. Chem., 1989, 54, 3258.
- 16 A. Fürstner, D. Jumbam, J. Teslic and H. Weidmann, J. Org. Chem., 1991, 56, 2213.

Paper 3/07567B Received 24th December 1993 Accepted 31st January 1994